4.8 Article

The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes

期刊

JOURNAL OF POWER SOURCES
卷 257, 期 -, 页码 163-169

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2013.12.144

关键词

Li ion battery; Full cell; Silicon-graphene composite; Solid-electrolyte interphase; Fluoro-ethylene carbonate; Lithium nickel cobalt aluminum oxide cathode

资金

  1. DOE SBIR Program (USA)
  2. National Research Foundation of Korea [2012R1A6A3A03040261]
  3. National Research Foundation of Korea [2012R1A6A3A03040261] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

When fluoroethylene carbonate (FEC) is added to the ethylene carbonate (EC)-diethyl carbonate (DEC) electrolyte, the capacity and cyclability of full-cells employing Si-graphene anode and lithium nickel cobalt aluminum oxide cathode (NCA) cathode are improved due to formation of a thin (30-50 nm) SEI layer with low ionic resistance (similar to 2 ohm cm(2)) on the surface of Si-graphene anode. These properties are confirmed with electrochemical impedance spectroscopy and a cross-sectional image analysis using Focused Ion Beam (FIB)-SEM. Approximately 5 wt.% FEC in EC:DEC (1:1 wt.%) shows the highest capacity and most stability. This high capacity and low capacity fade is attributed to a more stable SEI layer containing less CH2OCO2Li, Li2CO3 and LiF compounds, which consume cyclable Li. Additionally, a greater amount of polycarbonate (PC), which is known to form a more robust passivation layer, thus reducing further reduction of electrolyte, is confirmed with X-ray photoelectron spectroscopy (XPS). (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据