4.8 Article

Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction

期刊

JOURNAL OF POWER SOURCES
卷 271, 期 -, 页码 152-159

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2014.07.168

关键词

Lithium-ion batteries; Lithium plating; Graphite lithiation; Neutron diffraction

资金

  1. German Federal Ministry of Education and Research (BMBF) [03X4633A]

向作者/读者索取更多资源

Lithium plating in commercial LiNi1/3Mn1/3Co1/3O2/graphite cells at sub-ambient temperatures is studied by neutron diffraction at Stress-Spec, MLZ. Li plating uses part of the active lithium in the cell and competes with the intercalation of lithium into graphite. As a result, the degree of graphite lithiation during and after charge is lower. Comparison of graphite lithiation after a C/5 charging cycle fast enough to expect a considerable amount of Li plating with a much slower C/30 reference cycle reveals a lower degree of graphite lithiation in the first case; neutron diffraction shows less LiC6 and more LiC12 is present. If the cell is subjected to a 20 h rest period after charge, a gradual transformation of remaining LiC12 to LiC6 can be observed, indicating Li diffusion into the graphite. During the rest period after the C/5 charging cycle, the degree of graphite lithiation can be estimated to increase by 17%, indicating at least 17% of the active lithium is plated. Data collected during discharge immediately after C/5 charging give further evidence of the presence and amount of metallic lithium: in this case 19% of discharge capacity originates from the oxidation of metallic lithium. Also, lithium oxidation can be directly related to the high voltage plateau observed during discharge in case of lithium plating. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据