4.8 Review

Developments in electrode materials and electrolytes for aluminium-air batteries

期刊

JOURNAL OF POWER SOURCES
卷 236, 期 -, 页码 293-310

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2013.01.141

关键词

Aluminium anode; Corrosion; Equilibrium redox potential; Inhibitors; Ionic liquid; Oxygen reduction

向作者/读者索取更多资源

Aluminium air cells are high-energy density (<400W h kg(-1)) primary batteries developed in the 1960s. This review shows the influence of the materials, including: aluminium alloy, oxygen reduction catalyst and electrolyte type, in the battery performance. Two issues are considered: (a) the parasitic corrosion of aluminium at open-circuit potential and under discharge, due to the reduction of water on the anode and (b) the formation of a passive hydroxide layer on aluminium, which inhibits dissolution and shifts its potential to positive values. To overcome these two issues, super-pure (99.999 wt%) aluminium alloyed with traces of Mg, Sn, In and Ga are used to inhibit corrosion or to break down the passive hydroxide layer. Since high-purity aluminium alloys are expensive, an alternative approach is to add inhibitors or additives directly into the electrolyte. The effectiveness of binary and ternary alloys and the addition of different electrolyte additives are evaluated. Novel methods to overcome the self-corrosion problem include using anionic membranes and gel electrolytes or alternative solvents, such as alcohols or ionic liquids, to replace aqueous solutions. The air cathode is also considered and future opportunities and directions for the development of aluminium-air cells are highlighted. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据