4.8 Article

A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life

期刊

JOURNAL OF POWER SOURCES
卷 238, 期 -, 页码 123-136

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2013.02.091

关键词

Germanium; Li-ion anode; FEC; Fluoroethylene carbonate FEC; Stability toward oxidation; High rate

资金

  1. Robert A. Welch Foundation [F-1436, F-1131, F-1464]
  2. NSF

向作者/读者索取更多资源

We report stable, high capacity cycling performance over 2500 deep cycles at variable C-rates (1C, 5C and 10C) for slurry-cast Li-ion battery anodes made using commercially-available germanium nanopowder. The determining factor in cycling performance was the use of fluoroethylene carbonate (FEC) rather than ethylene carbonate (EC) as a co-solvent in the electrolyte. Cycling tests for the FEC-based electrode showed stable performance close to 700 mAh g(-1) through 500 cycles at 10C with near 100% Coulombic efficiency. These results show that a Ge-based slurry-cast electrode using active material structured only as a simple particle can be used to create an electrode system which is a candidate for optimization and scale-up. These cycling improvements obtained using the FEC-based electrolyte complements recent progress in Ge-based electrode research which has focused on improving performance through tailored structural and chemical modifications to the active material structure. The effect of the electrolyte on Li-ion transport, electrode stability toward oxidation, and electrode and SEI structural stability was studied using electrochemical impedance spectroscopy, differential capacity profiles, SEM and cross-sectional TEM imaging where we characterize the evolution of the electrode structure cycled with the FEC-based electrolyte considering the type and extent of SEI growth, particle agglomeration and fracturing. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据