4.8 Article

N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide-based organic electrolyte for high performance lithium-sulfur batteries

期刊

JOURNAL OF POWER SOURCES
卷 236, 期 -, 页码 207-214

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2013.02.068

关键词

Energy storage; Lithium-sulfur battery; Ionic liquid; Electrolyte

资金

  1. RIKEN Advanced Science Institute (ASI)
  2. Fund for Seeds of Collaborative Research

向作者/读者索取更多资源

Development of lithium-sulfur (Li-S) batteries has suffered from insufficient capacity and poor cycle-life. One of the reasons for these drawbacks is loss of active material, which is associated with the rapid diffusion of highly soluble lithium polysulfides formed as intermediates of discharge products in organic electrolytes, resulting in internal shuttling of lithium polysulfides. The diffusion of lithium polysulfides is determined largely by the physicochemical properties of electrolytes. Therefore, design of the physicochemical properties of the electrolyte to restrain the internal shuttling is vital to promote high performance for Li-S batteries. Here we present a newly designed room temperature ionic liquid (RTIL)-based organic electrolyte for Li-S battery. Our electrolyte provides a trade-off between solubility and diffusion rate of lithium polysulfides by mixing very different physicochemical properties of two solvents: high lithium polysulfide solubility of 1,2-dimethoxyethane (DME), and high viscosity of N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI). An adequate composition ratio of mixed PP13-TFSI/DME afforded large capacity, high Coulombic efficiency, improved capacity retention, and suppressed internal shuttling. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据