4.8 Article

High power supercapacitor electrodes based on flexible TiC-CDC nano-felts

期刊

JOURNAL OF POWER SOURCES
卷 201, 期 -, 页码 368-375

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2011.10.128

关键词

Carbide-derived carbon; Electrospinning; Nano-felt; Supercapacitor; Titanium carbide

资金

  1. China Scholarship Council
  2. Alexander von Humboldt Foundation
  3. U.S. Department of Energy [DE-FG02-08ER64624]

向作者/读者索取更多资源

Flexible electrospun titanium carbide (TiC) nano-felts were converted into carbide-derived carbon (CDC) by dry chlorination at temperatures between 200 and 1000 degrees C and used as binder-free supercapacitor electrodes. In the carbide nano-felt, TiC nano-crystals (20-30 nm) were embedded in a matrix of disordered carbon. After chlorination, the porous CDC nano-fibers/felts maintain their size, shape, and flexibility. With the increase of synthesis/chlorination temperature, the degree of carbon ordering increased. Electrochemical characterizations in 1 M H2SO4 and 1.5M tetraethylammonium tetrafluoroborate in acetonitrile were carried out on binder-free electrodes with galvanostatic cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. The highest gravimetric capacitance was identified for the CDC nano-felt synthesized at the highest temperature of 1000 degrees C, reaching 135 Fg(-1) in aqueous and 120 Fg(-1) in organic electrolytes. In contrast to powder or monolithic supercapacitor electrodes made of conventional activated, templated, or carbide-derived carbons, this material demonstrated excellent high-power handling ability: and similar to 50% of the low-rate capacitance was maintained at a very high scan rate of 5 Vs(-1). (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据