4.8 Article

Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries

期刊

JOURNAL OF POWER SOURCES
卷 219, 期 -, 页码 36-44

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2012.05.018

关键词

LiFePO4; Olivine oxide cathode; Li-ion cells; Thermal runaway; Thermal safety

向作者/读者索取更多资源

The carbon-coated LiFePO4 Li-ion oxide cathode was studied for its electrochemical, thermal, and safety performance. This electrode exhibited a reversible capacity corresponding to more than 89% of the theoretical capacity when cycled between 2.5 and 4.0 V. Cylindrical 18,650 cells with carbon-coated LiFePO4 also showed good capacity retention at higher discharge rates up to 5C rate with 99.3% coulombic efficiency, implying that the carbon coating improves the electronic conductivity. Hybrid Pulse Power Characterization (HPPC) test performed on LiFePO4 18,650 cell indicated the suitability of this carbon-coated LiFePO4 for high power HEV applications. The heat generation during charge and discharge at 0.5C rate, studied using an Isothermal Microcalorimeter (IMC), indicated cell temperature is maintained in near ambient conditions in the absence of external cooling. Thermal studies were also investigated by Differential Scanning Calorimeter (DSC) and Accelerating Rate Calorimeter (ARC), which showed that LiFePO4 is safer, upon thermal and electrochemical abuse, than the commonly used lithium metal oxide cathodes with layered and spinel structures. Safety tests, such as nail penetration and crush test, were performed on LiFePO4 and LiCoO2 cathode based cells, to investigate on the safety hazards of the cells upon severe physical abuse and damage. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据