4.8 Article

Capacity fade in Sn-C nanopowder anodes due to fracture

期刊

JOURNAL OF POWER SOURCES
卷 197, 期 -, 页码 246-252

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2011.09.025

关键词

Sn-C; Anodes; Nanostructured; Fracture

资金

  1. KEA [MINATRAN 211166]

向作者/读者索取更多资源

Sn based anodes allow for high initial capacities, which however cannot be retained due to the severe mechanical damage that occurs during Li-insertion and de-insertion. To better understand the fracture process during electrochemical cycling three different nanopowders comprised of Sn particles attached on artificial graphite, natural graphite or micro-carbon microbeads were examined. Although an initial capacity of 700 mAh g(-1) was obtained for all Sn-C nanopowders, a significant capacity fade took place with continuous electrochemical cycling. The microstructural changes in the electrodes corresponding to the changes in electrochemical behavior were studied by transmission and scanning electron microscopy. The fragmentation of Sn observed by microscopy correlates with the capacity fade, but this fragmentation and capacity fade can be controlled by controlling the initial microstructure. It was found that there is a dependence of the capacity fade on the Sn particle volume and surface area fraction of Sn on carbon. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据