4.8 Article

Electrocatalysis of oxygen reduction reaction on polyaniline-derived nitrogen-doped carbon nanoparticle surfaces in alkaline media

期刊

JOURNAL OF POWER SOURCES
卷 220, 期 -, 页码 306-316

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2012.07.119

关键词

Carbonized polyaniline; Electrocatalyst; Nitrogen-containing carbon nanostructures; Oxygen reduction reaction; Surface functional groups; Textural properties

资金

  1. Serbian Ministry of Education and Science [III45014, OI172043]
  2. Serbian Academy of Sciences and Arts

向作者/读者索取更多资源

Nitrogen-doped carbon nanomaterials were synthesized by the carbonization of three different nanostructured polyaniline (PANI) salt precursors: PANI 3,5-dinitrosalicylate nanorods, PANI 5-sulfosalicylate nanorods/nanotubes, and PANI hydrogen sulfate nanorods/nanotubes/nanosheets. A comparative study of the electrocatalytic activity of these materials for oxygen reduction reaction (ORR) in alkaline solution was performed by using rotating disk electrode voltammetry. The electrochemical data were correlated to the structural and textural data obtained by Raman spectroscopy, X-ray diffractometry, X-ray photoelectron spectroscopy, elemental analysis and nitrogen sorption analysis. A fine interplay of textural characteristics, overall content of surface nitrogen and content of specific surface nitrogen functional groups were found to be responsible for a considerable variations in electrocatalytic properties toward ORR, involving variations in apparent number of electrons exchanged per O-2 molecule (from 2 to nearly 4) and variations in onset potential. The catalyst loading was found to influence remarkably the ORR kinetics. The excellent electrocatalytic activity was found for carbonized PANI 5-sulfosalicylate. Namely, it exhibited the most positive onset potential amounting to -0.05 V vs. SCE at a catalyst loading of 500 mu g cm(-2). The interrelation between the electrocatalytic activity and the electrical double layer charging/discharging characteristics of the investigated N-doped nanocarbon materials was revealed. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据