4.8 Article

The effect of glycerol on the conductivity of Nafion-free ZrP/PTFE composite membrane electrolytes for direct hydrocarbon fuel cells

期刊

JOURNAL OF POWER SOURCES
卷 199, 期 -, 页码 14-21

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2011.09.104

关键词

Zirconium phosphate; Polytetrafluoroethylene; Glycerol; Composite membranes; Proton conductivity; Hydrocarbon fuel cells

资金

  1. Canadian federal government's Natural Sciences and Engineering Research Council
  2. Ontario provincial government's Ministry of Research and Innovation (Ontario Fuel Cell Research and Innovation Network)

向作者/读者索取更多资源

Composite membranes composed of zirconium phosphate (ZrP, a proton conductor), and porous polytetrafluoroethylene (PTFE, a mechanical support for ZrP), have been studied as electrolytes for direct hydrocarbon fuel cells that might operate at temperatures approaching 200 degrees C. The previous literature describes membranes formed by compressing PTFE particles and ZrP particles (conductivity = 10(-3) S cm(-1)). The results reported here show that adding glycerol (GLY) to a reaction mixture of ZrOCl(2).8H(2)O and H(3) PO(4) Pay to form ZrP in situ within the pores of PTFE, produced a membrane (conductivity = 0.02-0.045 S cm(-1)) that approached the performance of Nation (conductivity = 0.1 S cm(-1)). The conductivity remained unchanged when one of the membranes (conductivity = 0.02 S cm(-1)) was processed at the inlet conditions to a direct propane fuel cell (200 C and steam mole fraction yH(2)O = 0.86). The composite membrane, prepared with glycerol, contained ZEP spheres (100-500 nm) that were smaller than the PTFE pore diameters (1000-2000 nm). The enhanced conductivity may have been caused by a combination of proton transport on the exterior surfaces of the ZrP solid spheres, proton hopping through the bulk of the ZrP, and proton hopping via the OH groups in glycerol. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据