4.8 Article

Study of multi-walled carbon nanotubes for lithium-ion battery electrodes

期刊

JOURNAL OF POWER SOURCES
卷 196, 期 6, 页码 3303-3309

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2010.11.101

关键词

Carbon nanotubes; Li-ion batteries; High power; Conductive agents; Rate capability

资金

  1. Germany's Federal Ministry for Education and Research (BMBF)

向作者/读者索取更多资源

The potential use of multi-walled carbon nanotubes (MWCNTs) produced by Chemical Vapor Deposition (CVD) as conductive agent for electrodes in Li-ion batteries has been investigated. LiNi0.33Co0.33Mn0.33O2 (NCM) has been chosen as the active material for positive electrodes, and a nano-sized TiO2-rutile for the negative electrodes. Also the MWCNTs ability of reversibly inserting Li has been characterized. The electrochemical performances of the electrodes are studied by galvanostatic techniques and cyclic voltammetry. In particular the influence of the nanotubes on the rate capability is evaluated. The addition of MWCNTs significantly enhances the rate performances of NCM-based cathodes at all investigated C-rates. The 1 wt.% MWCNTs in TiO2 rutile-based anodes accounts for an increase in the rate capability when the electrodes are cycled in the potential range 1.0-3.0V. The range extension to more negative potentials (i.e. 0.1-3.0V), however, causes a capacity fading especially at higher current rates. The obtained results demonstrate that the addition of MWCNTs to the electrode composition, even in low amounts, enables an increase in both energy and power densities of a Li-ion battery. (c) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据