4.8 Article

In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid

期刊

JOURNAL OF POWER SOURCES
卷 196, 期 15, 页码 6382-6387

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2011.04.009

关键词

Lithium-ion battery; In situ electron microscopy; Ionic liquid; Tin dioxide

向作者/读者索取更多资源

We present an experimental platform that can be used for investigating lithium-ion batteries with very high spatial resolution. This in situ experiment runs inside a scanning electron microscope (SEM) and is able to track the morphology of an electrode including active and passive materials in real time. In this work it has been used to observe SnO2 during lithium uptake and release inside a working battery electrode. The experiment strongly relies on an ionic liquid which has very low vapor pressure and can therefore be used as an electrolyte inside the vacuum chamber of the SEM. In contrast to common electrochemical characterization tools, this method allows for the observation of microscopic mechanisms in electrodes. Depending on the SEM, resolutions down to 1 nm can be achieved. As a result, the experimental platform can be used to investigate chemical reaction pathways, to monitor phase changes in electrodes or to investigate degradation effects in batteries. SnO2 is a potential anode material for future high capacity lithium-ion batteries. Our observations reveal the formation of interface layers, large volume expansions, growth of extrusions, as well as mechanically induced cracks in the electrode particles during cycling. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据