4.8 Article

Mechanism of lithium storage in Si-O-C composite anodes

期刊

JOURNAL OF POWER SOURCES
卷 196, 期 24, 页码 10667-10672

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2011.08.072

关键词

Lithium anodes; Polymer-derived ceramics; Silicon oxycarbide; Mechanism of lithium storage

向作者/读者索取更多资源

A Si-O-C composite material is prepared by pyrolyzing a copolymer of phenyl-substituted polysiloxane and divinylbenzene at 800 degrees C under a hydrogen atmosphere. The material has a high delithiation capacity about 965.3 mA h g(-1) in the first cycle and retains 660 mA h g(-1) after 40 cycles at 50 mA g(-1). The differential capacity curves of the anode show that there are several reduction peaks between 0.2 and 0.6 V existing all the time during repeated cycles. By comparing (29)Si nuclear magnetic resonance ((29)Si MAS NMR), Si (2p) X-ray photoelectron spectroscopy (XPS) of the anode in the original, fully lithiated, and fully delithiated state, the reduction peaks are related to lithium reversible insertion into SiO(2)C(2), SiO(3)C, and Slat units, respectively. The corresponding (29)Si MAS NMR resonances shift to high field and their binding energies of the Si (2p) XPS peak increase in the fully lithiated state, and then both turn to the opposite direction in the fully delithiated state. The SiO(4) units decrease during repeated cycles. The remaining ones can reversibly transform to Li-silicate (Li(2)SiO(3)) when lithium is inserted, while the lost ones irreversibly transform to Li-silicate (Li(4)SiO(4)). However, the SiOC(3) units of the material are totally irreversible with lithium because they nearly disappear in the first discharge process, and lead to the formation SiC(4) units. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据