4.8 Article Proceedings Paper

Solid oxide fuel cell composite cathodes based on perovskite and fluorite structures

期刊

JOURNAL OF POWER SOURCES
卷 196, 期 17, 页码 7104-7109

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2010.07.096

关键词

SOFC; Cathode nanocomposites; Ultrasonic treatment; Radiation-thermal sintering; Oxygen mobility; Cell performance

向作者/读者索取更多资源

This work presents the results related to the functionally graded fluorite (F)-perovskite (P) nanocomposite cathodes for IT SOFC. Nanocrystalline fluorites (GDC, ScCeSZ) and perovskites (LSrMn, LSrFNi) were synthesized by Pechini method. Nanocomposites were prepared by the ultrasonic dispersion of F and P powders in isopropanol with addition of polyvinyl butyral. Different techniques for deposition and sintering of functionally graded cathode materials were applied including traditional approaches as well as original methods, such as radiation-thermal sintering under electron beam or microwave radiation. Morphology, microstructure and elemental composition of nanocomposites was characterized by XRD and HRTEM/SEM with EDX. Even for dense composites, the sizes of perovskite and fluorite domains remain in the nanorange providing developed P-F interfaces. Oxygen isotope heteroexchange and conductivity/weight relaxation studies demonstrated that these interfaces provide a path for fast oxygen diffusion. The redistribution of the elements between P and F phases in nanocomposites occurs without formation of insulating zirconate phases. Button-size fuel cells with nanocomposite functionally graded cathodes, thin YSZ layers and anode Ni/YSZ cermet (either bulk or supported on Ni-Al foam substrates) were manufactured. For optimized composition and functionally graded design of P-F nanocomposite cathodes, a stable performance in the intermediate temperature range with maximum power density up to 0.5 W cm(-2) at 700 degrees C in wet H-2/air feeds was demonstrated. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据