4.8 Article

Enhancing Ni-Sn nanowire lithium-ion anode performance by tailoring active/inactive material interfaces

期刊

JOURNAL OF POWER SOURCES
卷 196, 期 23, 页码 10207-10212

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2011.08.062

关键词

Lithium-ion battery; Anode material; Tin-based intermetallics; Nanowire arrays

资金

  1. University of Colorado
  2. Defense Advanced Research Projects Agency (DARPA) through the DARPA Center on Nanoscale Science and Technology for Integrated Micro/Nano-Electromechanical Transducers (iMINT) [N66001-10-1-4007]
  3. NNIN at the Colorado Nanofabrication Laboratory
  4. National Science Foundation [ECS-0335765]

向作者/读者索取更多资源

Nanowire arrays have attracted great attention due to their great potential to improve the performance of Li-ion batteries. In this work, we studied anode performance of lithium-ion batteries using Ni-Sn nanowire arrays. A versatile method through a porous anodic alumina (PAA) template-assisted electrochemical deposition process was developed to directly synthesize Ni-Sn nanowire arrays on copper current collectors. This method presents significant advantage that the as-prepared Ni-Sn nanowire arrays can be directly used as anode electrode without any binder or conductive materials. However, the formation of a continuous Ni-Sn film at the base of the nanowires result in quick loss of electrical contact between the active material and the current collector because of the large strain mismatch at the large continuous active/inactive material (A/I) interface. By growing short Cu nanoscrews as a buffer layer before Ni-Sn nanowire growth, the formation of Ni-Sn film was inhibited and the A/I interface was scaled down to nanoscale islands. The strain mismatch is thus significantly reduced, which results in enhanced structural stability and battery performance. The effect of the composition and the length of Ni-Sn nanowire arrays on the electrochemical performance of lithium ion batteries are also systematically studied. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据