4.8 Article Proceedings Paper

Design of experiment approach applied to reducing and oxidizing tolerance of anode supported solid oxide fuel cell. Part I: Microstructure optimization

期刊

JOURNAL OF POWER SOURCES
卷 196, 期 17, 页码 7058-7069

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2010.07.092

关键词

RedOx stability; Ni-YSZ anode supported cell; Solid oxide fuel cell; Design of experiment; Surface response methodology; Conductivity

向作者/读者索取更多资源

The main drawback of Ni/YSZ anode supports for solid oxide fuel cell application is their low tolerance to reducing and oxidizing (RedOx) atmosphere changes, owing to the Ni/NiO volume variation. This work describes a structured approach based on design of experiments for optimizing the microstructure for RedOx stability enhancement. A full factorial hypercube design and the response surface methodology are applied with the variables and their variation range defined as: (1) NiO proportion (40-60 wt% of the ceramic powders), (2) pore-former proportion (0-30 wt% corresponding to 0-64 vol.%), (3) NiO particle size (0.5-8 mu m) and (4) 8YSZ particle size (0.6-9 mu m). To obtain quadratic response models, 25 different compositions were prepared forming a central composite design. The measured responses are (i) shrinkage during firing, (ii) surface quality, (iii) as-sintered porosity, (iv) electrical conductivity after reduction and (v) expansion after re-oxidation. This approach quantifies the effect of all factors and their interactions. From the quadratic models, optimal compositions for high surface quality, electrical conductivity (>500 S cm(-1) at room temperature) and RedOx expansion (<0.2% upon re-oxidation) are defined. Results show that expansion after re-oxidation is directly influenced by the sample porosity whereas, surprisingly, the NiO content, varied between 40 and 60 wt%, does not show any impact on this response. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据