4.8 Article

Aging of the LiFePO4 positive electrode interface in electrolyte

期刊

JOURNAL OF POWER SOURCES
卷 195, 期 21, 页码 7415-7425

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2010.05.042

关键词

Lithium batteries; LiFePO4; Cathode; Surface; Aging

资金

  1. Region Pays de la Loire

向作者/读者索取更多资源

The evolution of lithium-containing species on the surface of grains of 500 nm LiFePO4 and 100 nm carbon-coated LiFePO4 materials during the aging process in LiPF6 electrolyte has been followed using coupled Li-7 MAS NMR, EIS (Electrochemical Impedance Spectroscopy) and XPS for materials synthesized with and without carbon coating. LiFePO4 undergoes surface reactivity upon immersion in classical LiPF6 electrolyte, although its open circuit voltage (similar to 3.2V) lies in the thermodynamical stability voltage range. The evolution of the NMR signal shows that the reaction of formation of the interphase is very slow as no evidence of passivation could be found even after 1 month of contact with the electrolyte. Li-7 MAS NMR combined with XPS indicates that carbon coating has a strong protective role towards formation of surface species on the material and hinders iron dissolution at elevated temperature. Coupled NMR, EIS and XPS experiments showed that the surface of the material grains is not covered by an homogenous layer. Increasing the storage temperature from 25 degrees C to 55 degrees C promotes the formation of organic species on the surface, most probably covering inorganic species such as LiF, LixPFy and LiPOyFz. No evidence of the formation of a resistive film is deduced from the evolution of EIS measurements. The interphase growth can accelerate the degradation of the electrochemical performance, leading to a loss of electrical contact within the electrode. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据