4.8 Article

Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance

期刊

JOURNAL OF POWER SOURCES
卷 195, 期 15, 页码 4997-5004

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2010.02.020

关键词

Lithium titanate; Combustion synthesis; Anode; Low temperature; Carbon-coated

资金

  1. Outstanding Young Scholar Grant at Jiangsu Province [2008023]
  2. National Basic Research Program of China [307 2007CB209704]

向作者/读者索取更多资源

Pristine and carbon-coated Li4Ti5O12 oxide electrodes are synthesized by a cellulose-assisted combustion technique with sucrose as organic carbon source and their low-temperature electrochemical performance as anodes for lithium-ion batteries are investigated. X-ray diffraction (XRD), infrared spectroscopy (IR), Raman spectroscopy, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) are applied to characterize the phase structure, composition, and morphology of the composites. It is found that the sequence of sucrose addition has significant effect on the phase formation of Li4Ti5O12. Carboncoated Li4Ti5O12 is successfully prepared by coating the pre-crystallized Li4Ti5O12 phase with sucrose followed by thermal treatment. Electrochemical lithium insertion/extraction performance is evaluated by the galvanostatic charge/discharge tests, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV), from room temperature (25 degrees C) to 20 degrees C. The carbon-coated composite anode materials show improved lithium insertion/extraction capacity and electrode kinetics, especially at high rates and low temperature. Both of the two samples show fairly stable cycling performance at various temperatures, which is highly promising for practical applications in power sources of electric or electric-hybrid vehicles. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据