4.8 Article

Hydrogen storage properties of TiMn1.5V0.2-based alloys for application to fuel cell system

期刊

JOURNAL OF POWER SOURCES
卷 195, 期 24, 页码 8215-8221

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2010.06.059

关键词

Ti-Mn-based alloy; Hydrogen absorption/desorption; Hydrogen supply; Hydrogen storage tank

资金

  1. Ministry of Science and Technology of China [2007CB209706, 2010CB631302]
  2. National Natural Science Foundation of China [20833009, 50925102]

向作者/读者索取更多资源

To meet the requirements of fuel cell power system for electric bike, the influence of partial substitution of Zr and Cr on hydrogen storage performance of TiMn1.5V0.2-based alloys is investigated first, and a hydrogen storage tank is then built using the developed TiMn1.5V0.2-based alloy as metal hydride bed and its hydrogen supply ability is further evaluated. It is found that for TiMn1.5V0.2-based alloys, the Zr substitution for Ti effectively reduces the plateau pressure but increases the plateau slope, while the partial substitution of Mn by Cr decreases the absorption plateau pressure, leading to a smaller hysteresis factor. After the optimization of components, 6 kg of Ti0.95Zr0.05Mn1.4Cr0.1V0.2 alloy powder with 5 wt.% aluminum foam is mixed uniformly to form a metal hydride bed inside the tank. The measurements show that the tank releases up to 82g of hydrogen to produce a 200W fuel cell output for 300min and has a stable cyclic capacity, indicating that hydrogen storage system of TiMn1.5V0.2-based alloys for fuel cell power system of electric bike is applicable. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据