4.8 Article Proceedings Paper

A binary ionic liquid system composed of N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide and lithium bis(trifluoromethanesulfonyl)imide: A new promising electrolyte for lithium batteries

期刊

JOURNAL OF POWER SOURCES
卷 194, 期 1, 页码 45-50

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2008.12.013

关键词

Lithium batteries; Electrolytes; Ionic liquids; Pyrrolidinium; LiTFSI

向作者/读者索取更多资源

Room temperature ionic liquids are nowadays the most appealing research target in the field of liquid electrolytes for lithium batteries, due to their high thermal stability, ionic conductivity and wide electrochemical windows. The cation structure of such solvents strictly influences their physical and chemical properties, in particular the viscosity and conductivity. In this paper we report on the preparation and characterization of a complete series of solutions between lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and the promising N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide (PY1,201) ionic liquid. A wide molality range has been explored in order to identify the optimal compositions in terms of conductivity and electrochemical stability. Our thermal results show that the solutions are amorphous independently on the LiTFSI content. Up to salt concentration of 0.4 mol kg(-1) the solutions have a very low viscosity (eta similar to 36 cP), a high ionic conductivity, even at temperatures below 0 degrees C, and a good electrochemical stability. Cations transport numbers ranging between 0.05 and 0.39 have been determined as a function of LiTFSI content. The combination of these properties makes the PY1,201-based solutions potentially attractive liquid electrolytes for lithium batteries. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据