4.8 Article

Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test

期刊

JOURNAL OF POWER SOURCES
卷 175, 期 2, 页码 881-885

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2007.09.102

关键词

thermal runaway; safety; abuse test; lithium-ion battery

向作者/读者索取更多资源

Thermal and electrochemical processes in a 1000 mAh lithium-ion pouch cell with a graphite anode and a LixCoO2 cathode during a safety test are examined. In overcharge tests, the forced current shifts the cell voltage to above 4.2 V. This causes a cell charged at the 1 C rate to lose cycleability and a cell charged at the 3 C rate to undergo explosion. In nail penetration and impact tests, a high discharge current passing through the cells gives rise to thermal runaway. These overcharge and high discharge currents promote joule heat within the cells and leads to decomposition and release of oxygen from the de-lithiated LixCoO2 and combustion of carbonaceous materials. X-ray diffraction analysis reveals the presence of Co3O4 in the cathode material of a 4.5 V cell heated to 400 degrees C. The major cathode product formed after the combustion process cells abused by forced current is Co3O4 and by discharge current the products are LiCoO2 and Co3O4. The formation of a trace quantity of CoO through the reduction of Co3O4 by virtue of the reducing power of the organic solvent is also discussed. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据