4.8 Article Proceedings Paper

Electrochemical binding and wiring in battery materials

期刊

JOURNAL OF POWER SOURCES
卷 184, 期 2, 页码 593-597

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2008.02.046

关键词

Li-ion batteries; Binders; Wiring; Gelatin; Atomic force microscopy; Cathode

向作者/读者索取更多资源

Binders in battery electrodes not only provide mechanical cohesiveness during battery operation but can also affect the electrode properties via the surface modification. Using atomic force microscopy (AFM), we study the surface structuring of three binders: polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC) and gelatin. We try to find correlation between the observed structures and the measured electrochemical charge-discharge characteristics. We further measure the binding ability of gelatin adsorbed from solutions of different pHs. While the best binding ability of gelatin is obtained at pH about 9, the least polarization is observed at pH 12. Both properties are explained based on the observed gelatin structuring as a function of pH. In the second part of this study, gelatin is used as a surface agent that dictates the organization of nanometre-sized carbon black particles around micrometre-sized cathodic active particles. Using microcontact impedance measurements on polished pellets we show that using gelatin-forced carbon black deposition the average electronic resistance around LiMn2O4 particles is decreased by more than two orders of magnitude. We believe that it is this decrease in resistance that improves significantly the rate performance of various cathode materials, such as LiMn2O4 and LiCoO2. (C) 2008 Elsevier B.V. All rights reserved

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据