4.1 Article

Asymmetric leakage in (Ba, Sr)TiO3 nanoparticle/parylene-C composite capacitors

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/polb.23156

关键词

(Ba; Sr)TiO3; capacitors; composites; nanoparticles; parylene-C; thin films

资金

  1. ARPA-e, an office of the US Department of Energy [DE-AR0000114]

向作者/读者索取更多资源

Nanoparticle polymer composite capacitors have been examined for some time as a route to high performance, printable capacitors. One approach to creating these composites is to use a particle film together with vapor deposited polymers, which can yield high performance, but also forms a structurally asymmetric device. The performance of a nanoparticle (Ba, Sr)TiO3 (BST)/parylene-C composite capacitor is compared to that of a nanoparticle BST capacitor without the polymer layer under both directions of bias. The composite device shows a five orders of magnitude improvement in the leakage current under positive bias of the bottom electrode relative to the pure-particle device, and four orders of magnitude improvement when the top electrode is positively biased. The voltage tolerance of the device is also improved and asymmetric (44 V vs. 28 V in bottom and top positive bias, respectively). This study demonstrates the advantage of this class of composite device construction, but also shows that proper application of the device bias in this type of asymmetrical system can yield an additional benefit. (C) 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据