4.1 Article

Solvent and concentration effects on the properties of electrospun poly(ethylene terephthalate) nanofiber mats

期刊

出版社

WILEY
DOI: 10.1002/polb.21380

关键词

electrospinning; fibers; nanotechnology; polyesters

向作者/读者索取更多资源

This study describes the preparation and characterization of nanofibrous mats obtained by electrospinning poly(ethylene terephthalate) (PET) solutions in trifluoroacetic acid/dichloromethane (TFA/DCM). Special attention was paid to the effect of polymer concentration and solvent properties on the morphology, structure, and mechanical and thermal properties of the electrospun nonwovens. The results show that the spinnable concentration of PET solution in TFA/DCM solvents is above 10 wt %. Mats have nanofibrous morphology with fibers having an average diameter in the range of 200-700 nm (depending on polymer concentration and solvent composition) and an interconnected pore structure. Higher solution concentration favors the formation of uniform fibers without beads and with higher diameter. Morphology and fiber assembly changed with the solvent properties. Solvent mixtures rich in TFA, i.e., those with higher dielectric constant and lower surface tension, originated fibers with small diameter. However, due to the lower volatility, those solvent mixtures also produced more branched and crosslinking fibers, with less morphologic uniformity. Mechanical properties (Young's modulus, ultimate strength, and elongation at break) and thermal properties (glass transition, crystallization, and melting) have been studied for the PET electrospun nanomats and compared with those of the original polymer. Solvent effect on fiber crystallinity was not significant, but a complex effect was observed on the mechanical properties of the electrospun mats, as a consequence of the different structural organization of the fibers within the mat network. (C) 2008 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据