4.1 Article

Effect of thermal expansion on shape memory behavior of polyurethane and its nanocomposites

期刊

出版社

WILEY
DOI: 10.1002/polb.21480

关键词

crystallization; nanocomposites; shape memory polymer; stimuli-sensitive polymer; thermal expansion

向作者/读者索取更多资源

The effects of thermal expansion on shape memory performance of shape memory polyurethanes and their nanocomposites with organoclay, carbon nanofiber (CNF), silicon carbide (SiC), and carbon black (CB) were evaluated. The shape memory test cycle involved tensile deformation at above the trigger temperature to initiate shape memory function, cooling to room temperature to fix the shape, and shape recovery induced by heating to above the trigger temperature. Phenomenological models were used to interpret the experimental data on coefficient of thermal expansion (CTE). It was found that Kerner model showed good fit for composites of SiC and CB, and Halpin model gave better fit for composites of organoclay and CNF. It was observed that thermal expansion exerts negative effect on recovered strain, the extent of which depends on the magnitude of temperature gradient, CTE, and the level of tensile strain. (C) 2008 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据