4.2 Article

Comparison of micelles formed by amphiphilic star block copolymer prepared in the presence of nonmetallic monomer activator

期刊

出版社

WILEY
DOI: 10.1002/pola.22543

关键词

biomaterials; micelles; monomer activator; polyester; poly(ethylene glycol); ring-opening polymerization; star block copolymer

资金

  1. Korea Health Promotion Institute [A050082] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

In this article, we describe the synthesis of PEG-b-polyester star block copolymers via ring-opening polymerization (ROP) of ester monomers initiated at the hydroxyl end group of the core poly(ethylene glycol) (PEG) using HCl Et2O as a monomer activator. The ROP of E-caprolactone (CL), trimethylene carbonate (TMC), or 1,4-dioxan-2-one (DO) was performed to synthesize PEG-b-polyester star block copolymers with one, two, four, and eight arms. The PEG-b-polyester star block copolymers were obtained in quantitative yield, had molecular weights close to the theoretical values calculated from the molar ratio of ester monomers to PEG, and exhibited monomodal GPC curves. The crystallinity of the PEG-b-polyester star block copolymers was determined by differential scanning calorimetry and X-ray diffraction. Copolymers with a higher arm number had a higher tendency toward crystallization. The crystallinity of the PEG-b-polyester star block copolymers also depended on the nature of the polyester block. The CMCs of the PEG-b-PCL star block copolymers, determined from fluorescence measurements, increased with increasing arm number. The CMCs of the four-arm star block copolymers with different polyester segments increased in the order 4a-PEG-b-PCL < 4a-PEG-b-PDO < 4a-PEG-b-PLGA < 4a-PEG-b-PTMC, suggesting a relationship between CMC and star block copolymer crystallinity. The partition equilibrium constant, K-v, which is an indicator of the hydrophobicity of the micelles of the PEG-polyester star block copolymers in aqueous media, increased with decreasing arm number and increasing crystallinity. A key aspect of the present work is that we successfully prepared PEG-b-polyester star block copolymers by a metal-free method. Thus, unlike copolymers synthesized by ROP using a metal as the monomer activator, our copolymers do not contain traces of metals and hence are more suitable for biomedical applications. Moreover, we confirmed that the PEG-b-polyester star block copolymers form micelles and hence may be potential hydrophobic drug delivery vehicles. (C) 2008 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据