4.4 Article

Cu nanoparticles supported mesoporous polyaniline and its applications towards non-enzymatic sensing of glucose and electrocatalytic oxidation of methanol

期刊

JOURNAL OF POLYMER RESEARCH
卷 20, 期 2, 页码 -

出版社

SPRINGER
DOI: 10.1007/s10965-013-0083-y

关键词

Mesoporous polyaniline; Non-enzymatic sensing; Glucose sensor; Methanol oxidation

资金

  1. Council of Scientific and Industrial Research (CSIR), New Delhi, [01(2423)/10/EMR-II]
  2. Indo-Mexican Joint Research Project [DST/INT/MEX/01-04/2011(iii)]
  3. CSIR, New Delhi

向作者/读者索取更多资源

Cu nanoparticles supported on mesoporous polyaniline (Cu/Meso-PANI) was synthesized by the self assembly of dual surfactants followed by the in-situ reduction of CuCl2 in aqueous solution. Materials were characterized by X-ray diffraction, Scanning electron microscopy, Transmission electron microscopy, and UV-visible spectroscopic method. Cu/Meso-PANI based non-enzymatic electrochemical sensor was fabricated for glucose detection. The Cu/Meso-PANI modified electrode showed high electrocatalytic activity towards the oxidation of glucose compared to Cu/PANI (Cu nanoparticles supported on conventional polyaniline), which is due the highly dispersed copper in the high surface area Meso-PANI matrix. The Cu/Meso-PANI modified electrode exhibited high selectivity towards glucose against several common interfering species. Cu/Meso-PANI modified electrode was also explored for the electrochemical oxidation of methanol, which finds application in direct methanol fuel cell. The electrochemical oxidation of methanol was investigated at the surface of Cu/Meso-PANI modified electrode in alkaline medium using cyclic voltammetry and chronoamperometry methods. Various reaction parameters such as effect of scan rate and concentration of methanol were investigated. Furthermore, the rate constant (k) for the electrocatalytic oxidation of methanol was also calculated. The promising electrocatalytic activity of Cu/Meso-PANI modified electrode provides a new platform for the fabrication of polyaniline based high-performance sensors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据