4.4 Article

Morphology, rheology and dynamic mechanical properties of PP/EVA/clay nanocomposites

期刊

JOURNAL OF POLYMER RESEARCH
卷 18, 期 6, 页码 1829-1839

出版社

SPRINGER
DOI: 10.1007/s10965-011-9590-x

关键词

Nanocomposites; Morphology; Rheology; Dynamic mechanical properties; Polyolefins; Polypropylene; EVA

资金

  1. Iranian Nanotechnology Initiative

向作者/读者索取更多资源

This paper reports on morphology, rheology and dynamic mechanical properties of polypropylene (PP)/ethylene vinyl acetate (EVA) copolymer/clay nanocomposite system prepared via a single step melt compounding process using a twin screw micro-compounder. Scanning electron microscopic (SEM) investigations revealed that the dispersed phase droplet size was reduced with incorporation of an organo-modified montmorillonite (OMMT). This reduction was more significant in presence of a maleated PP (PP-g-MAH) used as compatibilizer. Phase inversion in the compatibilized blends caused a further decrease in PP droplet size. The OMMT gallery spacing was higher in nanocomposites with EVA as matrix which could be attributed to higher tendency of OMMT nanoparticles towards EVA rather than PP. This enhanced tendency was confirmed by rheological analysis too. Transmission electron microscopy (TEM) results also showed that the majority of OMMT nanoparticles were localized on the interface and within EVA droplets. According to dynamic mechanical analysis, the compatibilized nanocomposites showed higher storage and loss moduli due to better dispersion of OMMT layers. The modulus enhancement of nanocomposites as a function of OMMT volume fraction was modeled by Halpin-Tsai's-Nielsen expression of modulus for nanocomposites. The results of modeling suggested that the aspect ratio of the intercalated OMMT, in the form of Einstein coefficient (K (E)), plays a determining role in the modulus enhancement of nanocomposites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据