4.4 Article

Modeling and optimization of a new impact-toughened epoxy nanocomposite using response surface methodology

期刊

JOURNAL OF POLYMER RESEARCH
卷 18, 期 4, 页码 509-517

出版社

SPRINGER
DOI: 10.1007/s10965-010-9443-z

关键词

Epoxy; Impact strength; RSM; Nanocomposite

资金

  1. University of Tabriz

向作者/读者索取更多资源

This paper reports the development of a high-impact epoxy nanocomposite toughened by the combination of poly(acrylonitrile-co-butadiene-co-styrene) (ABS) as thermoplastic, clay as layered nanofiller, and nano-TiO2 as particulate nanofiller. Response surface methodology (RSM) was applied for optimization and modeling of the impact strength of epoxy/ABS/clay/TiO2 quaternary nanocomposite. A second-order mathematical model between the response (impact strength) and variables (ABS, clay and nano-TiO2 contents) was derived. Analysis of variance (ANOVA) showed a high coefficient of determination value (R (2) = 98%). Under optimum conditions, maximum impact strength of 29.2 KJ/m(2) with 197% increase compared to neat epoxy was experimentally obtained. Also correlation between morphology and impact strength of the nanocomposite was investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD). A dispersion of exfoliated clay platelets, TiO2 nanoparticles with low agglomeration and ABS nanoparticles was obtained as morphology of the nanocomposite. A new and more effective method for impact toughening of epoxy was introduced. This study clearly showed that the addition of the combination of layered and particulate nanofillers along with ABS as thermoplastic has a considerable enhancement effect on impact strength of epoxy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据