4.4 Article

Synergistic effects of ammonium polyphosphate/melamine intumescent system with macromolecular char former in flame-retarding polyoxymethylene

期刊

JOURNAL OF POLYMER RESEARCH
卷 18, 期 2, 页码 293-303

出版社

SPRINGER
DOI: 10.1007/s10965-010-9418-0

关键词

Polyacetal; Ammonium polyphosphate; Flame retardant; Novolac

资金

  1. National High Technology Research and Development Program of China (863 program) [2007AA03Z540]

向作者/读者索取更多资源

The improvement of the flame retardancy of polyoxymethylene (POM) is a world-wide difficult problem due to its zippered decomposition property. This paper reported the preparation of the flame-retarding (FR) POM with the synergistic combination of ammonium polyphosphate (APP)/melamine (ME) intumescent flame retardant system and macromolecular char former (MC). The UL94 testing, mechanical properties testing, thermogravimetric analysis (TGA), cone calorimetry and scanning electron microscopy (SEM) were used to investigate the corresponding structure, performance and synergistic flame retardant mechanism. The experimental results showed that, in the used macromolecular char formers (novolac, PA6 and TPU), the combination of novolac with APP/ME intumescent system has the best synergism in flame-retarding POM, greatly enhancing the quality of the formed condensed charred layer and hence the corresponding flame retardancy. The obtained FR POM composite could achieve flame retardancy of UL94 3.2 mm V-0 level and remarkably decreased heat release rate relative to pure POM. The synergistic effect of novolac was shown to be the char formed cross-linking reaction of it with APP. Due to the thermodynamic compatibility of novolac and POM, the prepared FR POM composite also has fairly good mechanical performance, having tensile strength of 49.1 MPa and Izod notched impact strength of 2.60 kJ/m(2).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据