4.7 Article

A note on the breathing mode of an elastic sphere in Newtonian and complex fluids

期刊

PHYSICS OF FLUIDS
卷 27, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4914045

关键词

-

资金

  1. Croucher Foundation
  2. Columbia Undergraduate Scholars Program
  3. Department of Mechanical and Aerospace Engineering at Princeton University
  4. NSF [CBET-1234500]
  5. Div Of Chem, Bioeng, Env, & Transp Sys
  6. Directorate For Engineering [1234500] Funding Source: National Science Foundation

向作者/读者索取更多资源

Experiments on the acoustic vibrations of elastic nanostructures in fluid media have been used to study the mechanical properties of materials, as well as for mechanical and biological sensing. The medium surrounding the nanostructure is typically modeled as a Newtonian fluid. A recent experiment however suggested that high-frequency longitudinal vibration of bipyramidal nanoparticles could trigger a viscoelastic response in water-glycerol mixtures [Pelton et al., Viscoelastic flows in simple liquids generated by vibrating nanostructures, Phys. Rev. Lett. 111, 244502 (2013)]. Motivated by these experimental studies, we first revisit a classical continuum mechanics problem of the purely radial vibration of an elastic sphere, also called the breathing mode, in a compressible viscous fluid and then extend our analysis to a viscoelastic medium using the Maxwell fluid model. The effects of fluid compressibility and viscoelasticity are discussed. Although in the case of longitudinal vibration of bipyramidal nanoparticles, the effects of fluid compressibility were shown to be negligible, we demonstrate that it plays a significant role in the breathing mode of an elastic sphere. On the other hand, despite the different vibration modes, the breathing mode of a sphere triggers a viscoelastic response in water-glycerol mixtures similar to that triggered by the longitudinal vibration of bipyramidal nanoparticles. We also comment on the effect of fluid viscoelasticity on the idea of destroying virus particles by acoustic resonance. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据