4.7 Article

Start-up vortex flow past an accelerated flat plate

期刊

PHYSICS OF FLUIDS
卷 27, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4913981

关键词

-

向作者/读者索取更多资源

Viscous flow past a finite flat plate accelerating in the direction normal to itself is studied numerically. The plate moves with nondimensional speed t(p), where p = 0,1/2,1, 2. The work focuses on resolving the flow at early to moderately large times and determining the dependence on the acceleration parameter p. Three stages in the vortex evolution are identified and quantified. The first stage, referred to as the Rayleigh stage [Luchini and Tognaccini, The start-up vortex issuing from a semi-infinite flat plate, J. Fluid Mech. 455, 175-193 (2002)], consists of a vortical boundary layer of roughly uniform thickness surrounding the plate and its tip, without any separating streamlines. This stage is present only for p > 0, for a time-interval that scales like p(3), as p -> 0. The second stage is one of self-similar growth. The vortex trajectory and circulation satisfy inviscid scaling laws, the boundary layer thickness satisfies viscous laws. The self-similar trajectory starts immediately after the Rayleigh stage ends and lasts until the plate has moved a distance d = 0.5 to 1 times its length. Finally, in the third stage, the image vorticity due to the finite plate length becomes relevant and the flow departs from self-similar growth. The onset of an instability in the outer spiral vortex turns is also observed, however, at least for the zero-thickness plate considered here, it is shown to be easily triggered numerically by underresolution. The present numerical results are compared with experimental results of Pullin and Perry [Some flow visualization experiments on the starting vortex, J. Fluid Mech. 97, 239-255 (1980)], and numerical results of Koumoutsakos and Shiels [Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate, J. Fluid Mech. 328, 177-227 (1996)]. (C) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据