4.5 Article

A paradox of leaf-trait convergence: why is leaf nitrogen concentration higher in species with higher photosynthetic capacity?

期刊

JOURNAL OF PLANT RESEARCH
卷 122, 期 3, 页码 245-251

出版社

SPRINGER TOKYO
DOI: 10.1007/s10265-009-0222-z

关键词

Leaf trait variation; Photosynthesis-nitrogen relationship; Growth model; Root activity; Carbon and nitrogen economy

资金

  1. Japan Ministry of Education, Culture, Sports, Science and Technology
  2. Japan Ministry of the Environment [F-052]

向作者/读者索取更多资源

It is well known that leaf photosynthesis per unit dry mass (A(mass)) is positively correlated with nitrogen concentration (N(mass)) across naturally growing plants. In this article we show that this relationship is paradoxical because, if other traits are identical among species, plants with a higher A(mass) should have a lower N(mass), because of dilution by the assimilated carbon. To find a factor to overcome the dilution effect, we analyze the N(mass)-A(mass) relationship using simple mathematical models and literature data. We propose two equations derived from plant-growth models. Model prediction is compared with the data set of leaf trait spectrum obtained on a global scale. The model predicts that plants with a higher A(mass) should have a higher specific nitrogen absorption rate in roots (SAR), less biomass allocation to leaves, and/or greater nitrogen allocation to leaves. From the literature survey, SAR is suggested as the most likely factor. If SAR is the sole factor maintaining the positive relationship between N(mass) and A(mass), the variation in SAR is predicted to be much greater than that in A(mass); given that A(mass) varies 130-fold, SAR may vary more than 2000-fold. We predict that there is coordination between leaf and root activities among species on a global scale.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据