4.7 Review

Nodule performance within a changing environmental context

期刊

JOURNAL OF PLANT PHYSIOLOGY
卷 171, 期 12, 页码 1076-1090

出版社

ELSEVIER GMBH
DOI: 10.1016/j.jplph.2014.04.002

关键词

C/N metabolism; Climate change; Nodule; N-2 fixation; Omic methodologies

资金

  1. Spanish National Research and Development Programme-European Regional Development Fund ERDF [AGL2011-30386-C02-01, AGL2011-30386-C02-02]
  2. Ramon y Cajal research grant (Ministerio de Economia y Competitividad)

向作者/读者索取更多资源

Global climate models predict that future environmental conditions will see alterations in temperature, water availability and CO2 concentration ([CO2]) in the atmosphere. Climate change will reinforce the need to develop highly productive crops. For this purpose it is essential to identify target traits conditioning plant performance in changing environments. N-2 fixing plants represent the second major crop of agricultural importance worldwide. The current review provides a compilation of results from existing literature on the effects of several abiotic stress conditions on nodule performance and N2 fixation. The environmental factors analysed include water stress, salinity, temperature, and elevated [CO2]. Despite the large number of studies analysing [CO2] effects in plants, frequently they have been conducted under optimal growth conditions that are difficult to find in natural conditions where different stresses often occur simultaneously. This is why we have also included a section describing the current state of knowledge of interacting environmental conditions in nodule functioning. Regardless of the environmental factor considered, it is evident that some general patterns of nodule response are observed. Nodule carbohydrate and N compound availability, together with the presence of oxygen reactive species (ROS) have proven to be the key factors modulating N-2 fixation at the physiological/biochemical levels. However, with the exception of water availability and [CO2], it should also be considered that nodule performance has not been characterised in detail under other limiting growth conditions. This highlights the necessity to conduct further studies considering these factors. Finally, we also observe that a better understanding of these metabolic effects of changing environment in nodule functioning would require an integrated and synergistic investigation based on widely used and novel protocols such as transcriptomics, proteomics, metabolomics and stable isotopes. (C) 2014 Published by Elsevier GmbH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据