4.7 Article

Auxin influences strigolactones in pea mycorrhizal symbiosis

期刊

JOURNAL OF PLANT PHYSIOLOGY
卷 170, 期 5, 页码 523-528

出版社

ELSEVIER GMBH
DOI: 10.1016/j.jplph.2012.11.002

关键词

Auxin; bushy; Mycorrhizal symbiosis; Pea; Strigolactone

资金

  1. Australian Research Council
  2. University of Tasmania

向作者/读者索取更多资源

Hormone interactions are essential for the control of many developmental processes, including intracellular symbioses. The interaction between auxin and the new plant hormone strigolactone in the regulation of arbuscular mycorrhizal symbiosis was examined in one of the few auxin deficient mutants available in a mycorrhizal species, the auxin-deficient bsh mutant of pea (Pisum sativum). Mycorrhizal colonisation with the fungus Glomus intra radices was significantly reduced in the low auxin bsh mutant. The bsh mutant also exhibited a reduction in strigolactone exudation and the expression of a key strigolactone biosynthesis gene (PsCCD8). Strigolactone exudation was also reduced in wild type plants when the auxin content was reduced by stem girdling. Low strigolactone levels appear to be at least partially responsible for the reduced colonisation of the bsh mutant, as application of the synthetic strigolactone GR24 could partially rescue the mycorrhizal phenotype of bsh mutants. Data presented here indicates root auxin content was correlated with strigolactone exudation in both mutant and wild type plants. Mutant studies suggest that auxin may regulate early events in the formation of arbuscular mycorrhizal symbiosis by controlling strigolactone levels, both in the rhizosphere and possibly during early root colonisation. (C) 2012 Elsevier GmbH. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据