4.7 Article

Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance

期刊

JOURNAL OF PLANT PHYSIOLOGY
卷 169, 期 2, 页码 146-156

出版社

ELSEVIER GMBH
DOI: 10.1016/j.jplph.2011.08.020

关键词

Salinity stress; Perennial ryegrass; Antioxidant capacities

资金

  1. Special Fund for Public Welfare Industrial (Agriculture) Research of China [200903001]
  2. Chinese Academy of Sciences [092A281X02]

向作者/读者索取更多资源

Salinity could damage cellular membranes through overproduction of reactive oxygen species (ROS), while antioxidant capacities play a vital role in protecting plants from salinity caused oxidative damages. The objective of this study was to investigate the toxic effect of salt on the antioxidant enzyme activities, isoforms and gene expressions in perennial ryegrass (Lolium perenne L.). Salt-tolerant 'Quickstart II' and salt-sensitive 'DP1' were subjected to 0 and 250 mM NaCl for 12d. Salt stress increased the content of lipid peroxidation (MDA), electrolyte leakage (EL) and hydrogen peroxide (H2O2), to a greater extent in salt-sensitive genotype. Salt-stressed plant leaves exhibited a greater activity of superoxide dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11) at 4d after treatment (DAT), but a lower level of enzyme activity at 8 and 12d, when compared to the control. Catalase (CAT, EC 1.11.1.6) activity was greater at 4 DAT and thereafter decreased in salt tolerant genotype relative to the control, whereas lower than the control during whole experiment period for salt-sensitive genotype. There were different patterns of five isoforms of SOD, POD and two isoforms of APX between two genotypes. Antioxidant gene expression was positively related to isoenzymatic and total enzymatic activities during 12-d salt-treated leaves of two genotypes, with a relatively higher level in salt-tolerant genotype. Thus, salt tolerance could be related to the constitutive/induced antioxidant gene, leading to more efficient enzyme stimulation and protection in perennial ryegrass. (C) 2011 Elsevier GmbH. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据