4.7 Article

Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings

期刊

JOURNAL OF PLANT PHYSIOLOGY
卷 168, 期 10, 页码 1021-1030

出版社

ELSEVIER GMBH
DOI: 10.1016/j.jplph.2010.12.004

关键词

Cadmium; Magnesium deficiency; Oryza sativa L.; Oxidative stress

资金

  1. National Science Council of the Republic of China [NSC 99-2628-B-002-001]

向作者/读者索取更多资源

Cadmium (Cd) is one of the most toxic heavy metals and inhibits physiological processes of plants. Magnesium (Mg) is known as one of the essential nutrients for plants. Mg deficiency in plants affects metabolic processes. Plants grown in the field may encounter several abiotic stresses, rather than a single stress. Thus, the relationship between Mg nutrition and Cd toxicity is of ecological importance. In this study, effects of Mg deficiency on antioxidant systems and Cd toxicity in rice seedlings were investigated. Mg deficiency significantly decreased Mg concentrations in shoot and roots of rice seedlings. However, fresh weight and dry weight of rice seedlings were not affected by Mg deficiency. The contents of ascorbate and glutathione (GSH), the ratio of GSH/oxidized glutathione, and the activities of superoxide dismutase, ascorbate peroxidase, glutathione reductase, and catalase in Mg-deficient leaves were higher than respective control leaves. Cd toxicity was judged by the decrease in biomass production, decrease in chlorophyll, and induction of oxidative stress. Based on these criteria, we demonstrated that Mg deficiency protected rice seedlings from Cd stress. Moreover, chlorophyll destruction by paraquat was higher in detached leaves from Mg-sufficient than Mg-deficient seedlings. Cd concentration was higher in Mg-deficient shoot and roots than their respective control shoot and roots, suggesting that the protective effect of Mg deficiency against Cd toxicity is not due to reduction of Cd uptake. Moreover, we observed that Cd-decreased Fe and Zn contents in Mg-deficient seedlings were more pronounced than that in Mg-sufficient seedlings. Of particular interest is the finding that the increase in OsIRT1, OsZIP1, and OsZIP3 transcripts caused by Cd in Mg-deficient roots was greater than that in control roots. (C) 2010 Elsevier GmbH. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据