4.5 Article

Rate of soil-aggregate formation under different organic matter amendments-a short-term incubation experiment

期刊

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE
卷 177, 期 2, 页码 297-306

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jpln.201200628

关键词

ergosterol; water-stable aggregates; microbial biomass; soil respiration

资金

  1. German Research Foundation (DFG)

向作者/读者索取更多资源

To improve soil structure and take advantage of several accompanying ecological benefits, it is necessary to understand the underlying processes of aggregate dynamics in soils. Our objective was to quantify macroaggregate (> 250 m) rebuilding in soils from loess (Haplic Luvisol) with different initial soil organic C (SOC) contents and different amendments of organic matter (OM) in a short term incubation experiment. Two soils differing in C content and sampled at 0-5 and 5-25cm soil depths were incubated after macroaggregate destruction. The following treatments were applied: (1) control (without any addition), (2) OM1 (addition of OM: preincubated wheat straw [< 10mm, C : N 40.6] at a rate of 4.1 g C [kg soil](-1)), and (3) OM2 (same as (2) at a rate of 8.2 g C [kg soil](-1)). Evolution of CO2 released from the treatments was measured continuously, and contents of different water-stable aggregate-size classes (> 250 m, 250-53 m, < 53 m), microbial biomass, and ergosterol were determined after 7 and 28 d of incubation. Highest microbial activity was observed in the first 3 d after the OM application. With one exception, > 50% of the rebuilt macroaggregates were formed within the first 7 d after rewetting and addition of OM. However, the amount of organic C within the new macroaggregates was approximate to 2- to 3-fold higher than in the original soil. The process of aggregate formation was still proceeding after 7 d of incubation, however at a lower rate. Contents of organic C within macroaggregates were decreased markedly after 28 d of incubation in the OM1 and OM2 treatments, suggesting that the microbial biomass (bacteria and fungi) used organic C within the newly built macroaggregates. Overall, the results confirmed for all treatments that macroaggregate formation is a rapid process and highly connected with the amount of OM added and microbial activity. However, the time of maximum aggregation after C addition depends on the soil and substrate investigated. Moreover, the results suggest that the primary macroaggregates, formed within the first 7 d, are still unstable and oversaturated with OM and therefore act as C source for microbial decomposition processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据