4.5 Article

Stability in solution and reactivity with soils and soil components of iron and zinc complexes

期刊

JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE
卷 173, 期 6, 页码 900-906

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jpln.200900154

关键词

amino acid; gluconate; humate; lignosulfonate

资金

  1. Spanish Ministry of Science and Education [AGL2007-63756]

向作者/读者索取更多资源

Naturally derived complexes with the ability to complex (unidentate) or chelate (polydentate) metals are a cheaper alternative to synthetic chelates to correct micronutrient deficiencies, but despite their widespread use there is a lack of knowledge on their agronomic performance. The aim of this paper was to evaluate the stability of iron (Fe) and zinc (Zn) lignosulfonate, gluconate, amino acid, and humate complexes in solution over time and at different pH values. Also, their stability in a concentrated nutrient solution and their reactivity with soils and soil components was evaluated. In our experimental conditions, all the complexes (except Fe amino acid) remained stable in solution for an extended period of time. All Zn complexes and the Fe lignosulfonate were stable in solution up to pH 7.0-7.5, while Fe gluconate only maintained 20%-40% of the iron in solution in the pH range 5-11 and Fe amino acid and humate complexes barely maintained small concentrations of Fe in solution above pH 3. Most of the complexes maintained Fe and Zn in concentrated nutrient solutions for irrigation systems, but Fe amino acid only maintained around 70% of the iron added. In general, the interactions of complexes with soils and soil components produced a high retention. The interaction of Fe lignosulfonate with peat, illite, and ferrihydrite, and Fe gluconate with peat and illite resulted in significant amounts of Fe to remain in solution, while for the Fe amino acid and humate the Fe remaining in solution was low. All Zn complexes were highly retained in an acidic peat, illite, and montmorillonite clays and soils, while no retention was observed on ferrihydrite. In conclusion, the stability of complexes in different conditions is related to the percentage of complexed element in the products. While complexes can be used to maintain micronutrients in solution in aqueous media (foliar and fertigation), their application to soil should be considered as a measure to increase metal availabilities but not their solubility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据