4.6 Article

Overexpressing SgNCED1 in tobacco increases ABA level, antioxidant enzyme activities, and stress tolerance

期刊

JOURNAL OF PLANT GROWTH REGULATION
卷 27, 期 2, 页码 151-158

出版社

SPRINGER
DOI: 10.1007/s00344-008-9041-z

关键词

abscisic acid (ABA); antioxidant enzymes; 9-cis-epoxycarotenoid dioxygenase (NCED); drought; salinity

向作者/读者索取更多资源

Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses. 9-cis-epoxycarotenoid dioxygenase (NCED) is the key enzyme of ABA biosynthesis in higher plants. A NCED gene, SgNCED1, was overexpressed in transgenic tobacco plants which resulted in 51-77% more accumulation of ABA in leaves. Transgenic tobacco plants decreased stomatal conductance, transpiration rate, and photosynthetic rate but induced activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate-peroxidase (APX). Hydrogen peroxide (H2O2) and nitric oxide (NO) in leaves were also induced in the transgenic plants. Compared to the wild-type control, the transgenic plants improved growth under 0.1 M mannitol-induced drought stress and 0.1 M NaCl-induced salinity stress. It is suggested that the ABA-induced H2O2 and NO generation upregulates the stomatal closure and antioxidant enzymes, and therefore increases drought and salinity tolerance in the transgenic plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据