4.7 Article

Melatonin represses oxidative stress-induced activation of the MAP kinase and mTOR signaling pathways in H4IIE hepatoma cells through inhibition of Ras

期刊

JOURNAL OF PINEAL RESEARCH
卷 44, 期 4, 页码 379-386

出版社

WILEY
DOI: 10.1111/j.1600-079X.2007.00539.x

关键词

Akt; ERK1/2; mTOR; p38 MAP kinase; reactive oxygen species

资金

  1. NIDDK NIH HHS [DK-13499., R01 DK013499-39, R01 DK013499] Funding Source: Medline

向作者/读者索取更多资源

Reactive oxygen species (ROS) have been implicated in the pathogenesis of a variety of diseases, and antioxidant treatment is currently being investigated as a potential therapy to attenuate the detrimental effects of ROS-mediated oxidative stress. Melatonin is a potent naturally produced antioxidant, which acts through various mechanisms to ameliorate the toxic effects of ROS. However, little is known about the mechanisms of signaling pathways through which melatonin acts to reverse the effects of ROS. In the present study, the effect of melatonin treatment on the hydrogen peroxide (H2O2)-induced activation of the mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) signaling pathways was assessed in H4IIE hepatoma cells. It was found that melatonin strongly attenuated H2O2-induced activation of the ERK1/2 and p38 MAP kinases, as well as several of their downstream targets. Melatonin also attenuated the H2O2-induced phosphorylation of Akt and the Akt substrate mTOR, as well as a downstream target of mTOR action, 4E-BP1. Upregulation of ERK1/2, p38, and Akt signaling by H2O2 was accompanied by activation of Ras, an effect that was blocked by melatonin. Overall, the results suggest that melatonin acts to prevent many of the H2O2-induced alterations in the MAPK and mTOR signaling pathways through inhibition of Ras, at least in H4IIE hepatoma cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据