4.6 Article

Modulation of the autonomic nervous system and behaviour by acute glial cell Gq protein-coupled receptor activation in vivo

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 591, 期 22, 页码 5599-5609

出版社

WILEY-BLACKWELL
DOI: 10.1113/jphysiol.2013.261289

关键词

-

资金

  1. NIH [RO1-NS020212-26, U19MH82441]
  2. NICHD [HD03110]

向作者/读者索取更多资源

Glial fibrillary acidic protein (GFAP)-expressing cells (GFAP(+) glial cells) are the predominant cell type in the central and peripheral nervous systems. Our understanding of the role of GFAP(+) glial cells and their signalling systems in vivo is limited due to our inability to manipulate these cells and their receptors in a cell type-specific and non-invasive manner. To circumvent this limitation, we developed a transgenic mouse line (GFAP-hM3Dq mice) that expresses an engineered G(q) protein-coupled receptor (G(q)-GPCR) known as hM3Dq DREADD (designer receptor exclusively activated by designer drug) selectively in GFAP(+) glial cells. The hM3Dq receptor is activated solely by a pharmacologically inert, but bioavailable, ligand (clozapine-N-oxide; CNO), while being non-responsive to endogenous GPCR ligands. In GFAP-hM3Dq mice, CNO administration increased heart rate, blood pressure and saliva formation, as well as decreased body temperature, parameters that are controlled by the autonomic nervous system (ANS). Additionally, changes in activity-related behaviour and motor coordination were observed following CNO administration. Genetically blocking inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ increases in astrocytes failed to interfere with CNO-mediated changes in ANS function, locomotor activity or motor coordination. Our findings reveal an unexpectedly broad role of GFAP(+) glial cells in modulating complex physiology and behaviour in vivo and suggest that these effects are not dependent on IP3-dependent increases in astrocytic Ca2+.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据