4.6 Review

Role of the Wnt-Frizzled system in cardiac pathophysiology: a rapidly developing, poorly understood area with enormous potential

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 591, 期 6, 页码 1409-1432

出版社

WILEY
DOI: 10.1113/jphysiol.2012.235382

关键词

-

资金

  1. Canadian Institutes forHealth Research [6957, 44365, 68929]
  2. Quebec Heart and Stroke Foundation
  3. Fondation Leducq for research funding

向作者/读者索取更多资源

The Wnt-Frizzled (Fzd) G-protein-coupled receptor system, involving 19 distinct Wnt ligands and 10 Fzd receptors, plays key roles in the development and functioning of many organ systems. There is increasing evidence that Wnt-Fzd signalling is important in regulating cardiac function. Wnt-Fzd signalling primarily involves a canonical pathway, with dishevelled-1-dependent nuclear translocation of -catenin that derepresses Wnt-sensitive gene transcription, but can also include non-canonical pathways via phospholipase-C/Ca2+ mobilization and dishevelled-protein activation of small GTPases. Wnt-Fzd effects vary with specific ligand/receptor interactions and associated downstream pathways. This paper reviews the biochemistry and physiology of the Wnt-Fzd complex, and presents current knowledge of Wnt signalling in cardiac remodelling processes such as hypertrophy and fibrosis, as well as disease states such as myocardial infarction (MI), heart failure and arrhythmias. Wnt signalling is activated during hypertrophy; inhibiting Wnt signalling by activating glycogen synthase kinase attenuates the hypertrophic response. Wnt signalling has complex and time-dependent actions post-MI, so that either beneficial or harmful effects might result from Wnt-directed interventions. Stem cell biology, a promising area for therapeutic intervention, is highly regulated by Wnt signalling. The Wnt system regulates fibroblast function, and is prominently altered in arrhythmogenic ventricular cardiomyopathy, a familial disease involving excess deposition of fibroadipose tissue. Wnt signalling controls connexin43 expression, thereby contributing to the regulation of cardiac electrical stability and arrhythmia generation. Although much has been learned about Wnt-Fzd signalling in hypertrophy and infarction, its role is poorly understood for a broad range of other heart disorders. Much more needs to be learned for its contributions to be fully appreciated, and to permit more effective exploitation of its enormous potential in therapeutic development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据