4.6 Article

Temporal response of positive and negative regulators in response to acute and chronic exercise training in mice

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 591, 期 20, 页码 5157-5169

出版社

WILEY
DOI: 10.1113/jphysiol.2013.254979

关键词

-

资金

  1. West Virginia University Research Funding and Development Grant
  2. American Heart Association [10BGIA3630002]
  3. Tobacco Related Disease Research Program [14KT-0091]
  4. Cornelius Hopper TRDRP Supplement Award

向作者/读者索取更多资源

Angiogenesis is controlled by a balance between positive and negative angiogenic factors, but temporal protein expression of many key angiogenic regulators in response to exercise are still poorly defined. In C57BL/6 mice, we evaluated the temporal protein expression of several pro-angiogenic and anti-angiogenic factors in response to (1) a single acute bout of exercise and (2) chronic exercise training resulting from 3, 5, 7, 14 and 28 days of voluntary wheel running. Following acute exercise, protein levels of vascular endothelial growth factor-A (VEGF), endostatin and nucleolin were increased at 2-4 h (P < 0.05), whereas matrix metalloproteinase (MMP)-2 was elevated within a 12-24 h window (P < 0.05). Training increased muscle capillarity 11%, 15% and 22% starting with 7, 14 and 28 days of training, respectively (P < 0.01). Basal VEGF and MMP-2 were increased by 31% and 22%, respectively, compared to controls (P < 0.05) after 7 days (7d) training, but decreased to back to baseline after 14d training. After 28d training VEGF fell 49% below baseline control (P < 0.01). Basal muscle expression of thrombospondin 1 (TSP-1) was approximate to 900% greater in 14d- and 28d-trained mice compared to either 5d- and 7d-trained mice (P < 0.05), and tended to increase by approximate to 180-258% compared to basal control levels (P < 0.10). The acute responsiveness of VEGF to exercise in untrained mice (i.e. 161% increase, P < 0.001) was lost with capillary adaptation occurring after 7, 14 and 28d training. Taken together, these data support the notion that skeletal muscle angiogenesis is controlled by a balance between positive and negative mitogens, and reveals a complex, highly-coordinated, temporal scheme whereby these factors can differentially influence capillary growth in response to acute versus chronic exercise.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据