4.6 Article

Function and expression of ryanodine receptors and inositol 1,4,5-trisphosphate receptors in smooth muscle cells of murine feed arteries and arterioles

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 590, 期 8, 页码 1849-1869

出版社

WILEY
DOI: 10.1113/jphysiol.2011.222083

关键词

-

资金

  1. National Institutes of Health [RO1 HL086483, RO1 HL 32469, PO1 HL070687]
  2. AHA [0815778G]

向作者/读者索取更多资源

We tested the hypothesis that vasomotor control is differentially regulated between feed arteries and downstream arterioles from the cremaster muscle of C57BL/6 mice. In isolated pressurized arteries, confocal Ca2+ imaging of smooth muscle cells (SMCs) revealed Ca2+ sparks and Ca2+ waves. Ryanodine receptor (RyR) antagonists (ryanodine and tetracaine) inhibited both sparks and waves but increased global Ca2+ and myogenic tone. In arterioles, SMCs exhibited only Ca2+ waves thatwere insensitive to ryanodine or tetracaine. Pharmacological interventions indicated that RyRs are functionally coupled to large-conductance, Ca2+-activated K+ channels (BKCa) in SMCs of arteries, whereas BKCa appear functionally coupled to voltage-gated Ca2+ channels in SMCs of arterioles. Inositol 1,4,5-trisphosphate receptor (IP3R) antagonists (xestospongin D or 2-aminoethoxydiphenyl borate) or a phospholipase C inhibitor (U73122) attenuated Ca2+ waves, global Ca2+ and myogenic tone in arteries and arterioles but had no effect on arterial sparks. Real-time PCR of isolated SMCs revealed RyR2 as the most abundant isoform transcript; arteries expressed twice the RyR2 but only 65% the RyR3 of arterioles and neither vessel expressed RyR1. Immunofluorescent localisation of RyR protein indicated bright, clustered staining of arterial SMCs in contrast to diffuse staining in arteriolar SMCs. Expression of IP3R transcripts and protein immunofluorescence were similar in SMCs of both vessels with IP3R1>> IP3R2> IP3R3. Despite similar expression of IP3Rs and dependence of Ca2+ waves on IP3Rs, these data illustrate pronounced regional heterogeneity in function and expression of RyRs between SMCs of the same vascular resistance network. We conclude that vasomotor control is differentially regulated in feed arteries vs. downstream arterioles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据