4.6 Article

The Arabidopsis central vacuole as an expression system for intracellular transporters: functional characterization of the Cl-/H+ exchanger CLC-7

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 590, 期 15, 页码 3421-3430

出版社

WILEY
DOI: 10.1113/jphysiol.2012.230227

关键词

-

资金

  1. Telethon Italy [GGP08064]
  2. EU Research Training Network 'VaTEP'
  3. Progetti di Ricerca di Interesse Nazionale
  4. Compagnia San Paolo and the Italian Institute of Technology (SEED project)

向作者/读者索取更多资源

Functional characterization of intracellular transporters is hampered by the inaccessibility of animal endomembranes to standard electrophysiological techniques. Here, we used Arabidopsis mesophyll protoplasts as a novel heterologous expression system for the lysosomal chlorideproton exchanger CLC-7 from rat. Following transient expression of a rCLC-7:EGFP construct in isolated protoplasts, the fusion protein efficiently targeted to the membrane of the large central vacuole, the lytic compartment of plant cells. Membrane currents recorded from EGFP-positive vacuoles were almost voltage independent and showed time-dependent activation at elevated positive membrane potentials as a hallmark. The shift in the reversal potential of the current induced by a decrease of cytosolic pH was compatible with a 2Cl-/1H+ exchange stoichiometry. Mutating the so-called gating glutamate into alanine (E245A) uncoupled chloride fluxes from the movement of protons, transforming the transporter into a chloride channel-like protein. Importantly, CLC-7 transport activity in the vacuolar expression system was recorded in the absence of the auxiliary subunit Ostm1, differently to recent data obtained in Xenopus oocytes using a CLC-7 mutant with partial plasma membrane expression. We also show that plasma membrane-targeted CLC-7E245A is non-functional in Xenopus oocytes when expressed without Ostm1. In summary, our data suggest the existence of an alternative CLC-7 operating mode, which is active when the protein is not in complex with Ostm1. The vacuolar expression system has the potential to become a valuable tool for functional studies on intracellular ion channels and transporters from animal cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据