4.6 Article

Skin sympathetic nerve activity component synchronizing with cardiac cycle is involved in hypovolaemic suppression of cutaneous vasodilatation in hyperthermia

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 589, 期 24, 页码 6231-6242

出版社

WILEY
DOI: 10.1113/jphysiol.2011.220251

关键词

-

资金

  1. Grants-in-Aid for Scientific Research [23590277, 23689014] Funding Source: KAKEN

向作者/读者索取更多资源

Although cutaneous vasodilatation in hyperthermia was suppressed during hypovolaemia, the efferent neural pathway mediating this suppression has not been identified. To determine the electrical nerve signals which account for the suppression of cutaneous vasodilatation during hypovolaemia, skin sympathetic nerve activity (SSNA; microneurography) from the peroneal nerve, laser-Doppler blood flow (LDF) on the ipsilateral dorsal foot, mean arterial pressure (MAP; sonometry) and oesophageal temperature (T-oes) were measured before and during 45 min of passive warming in 20 healthy subjects during normovolaemia (n = 10) or hypovolaemia (n = 10) conditions. Hypovolaemia was achieved by diuretic administration. Cutaneous vascular conductance (CVC = LDF/MAP), SSNA burst frequency and total SSNA obtained from rectified and filtered SSNA signal increased as T-oes increased by similar to 0.5 degrees C by the end of warming in both groups. The increase in CVC was significantly lower in hypovolaemia than normovolaemia (P < 0.0001), but with no significant difference in the increase in burst frequency and total SSNA between groups (P > 0.32). However, using an alternative analysis that constructed spike incidence histograms from the original signal using 0.05 s bins during the 5 s following a given R-wave, we found a SSNA component synchronized with the cardiac cycle with a 1.1-1.3 s latency. This component increased with an increase in T-oes and the increase was significantly suppressed by hypovolaemia (P < 0.0001). In conclusion, hypovolaemic suppression of cutaneous vasodilatation during hyperthermia might be caused by a reduction in the SSNA component synchronized with cardiac cycle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据