4.6 Article

Junctin and the histidine-rich Ca2+ binding protein: potential roles in heart failure and arrhythmogenesis

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 587, 期 13, 页码 3125-3133

出版社

WILEY
DOI: 10.1113/jphysiol.2009.172171

关键词

-

资金

  1. NIH [HL 26057, HL 64018, HL 77101, T32 HL 007382]
  2. Leducq Foundation

向作者/读者索取更多资源

Contractile dysfunction and ventricular arrhythmias associated with heart failure have been attributed to aberrant sarcoplasmic reticulum (SR) Ca2+ cycling. The study of junctin (JCN) and histidine-rich Ca2+ binding protein (HRC) becomes of particular importance since these proteins have been shown to be critical regulators of Ca2+ cycling. Specifically, JCN is a SR membrane protein, which is part of the SR Ca2+ release quaternary structure that also includes the ryanodine receptor, triadin and calsequestrin. Functionally, JCN serves as a bridge between calsequestrin and the Ca2+ release channel, ryanodine receptor. HRC is a SR luminal Ca2+ binding protein known to associate with both triadin and the sarcoplasmic reticulum Ca2+-ATPase, and may thus mediate the crosstalk between SR Ca2+ uptake and release. Indeed, evidence from genetic models of JCN and HRC indicate that they are important in cardiophysiology as alterations in these proteins affect SR Ca2+ handling and cardiac function. In addition, downregulation of JCN and HRC may contribute to Ca2+ cycling perturbations manifest in the failing heart, where their protein levels are significantly reduced. This review examines the roles of JCN and HRC in SR Ca2+ cycling and their potential significance in heart failure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据