4.6 Article

Differential responses of sensory neurones innervating glycolytic and oxidative muscle to protons and capsaicin

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 586, 期 13, 页码 3245-3252

出版社

WILEY
DOI: 10.1113/jphysiol.2008.154450

关键词

-

资金

  1. NHLBI NIH HHS [R01 HL078866, R01 HL075533, R01 HL060800] Funding Source: Medline

向作者/读者索取更多资源

Activation of thin fibre muscle afferent nerves by metabolic by-products plays a critical role in the initiation and maintenance of the autonomic response to exercise and the metabolic profile of active muscle can influence the response. The purpose of this report was to determine the responsiveness of sensory neurones innervating muscles comprising predominantly glycolytic and oxidative fibres to protons and capsaicin using whole-cell patch clamp methods. Dorsal root ganglion (DRG) neurones from 4- to 6-week-old rats were labelled by injecting the fluorescence tracer DiI into the muscle 3-5 days prior to the recording experiments. The percentage of the DRG neurones innervating glycolytic and oxidative muscle was similar in response to both protons and capsaicin. However, the neurones innervating glycolytic muscle had greater inward current amplitude responses to protons and capsaicin as compared with oxidative muscle. The peak current amplitudes to pH 6.0 were 0.84 +/- 0.06 nA (oxidative muscle) versus 1.36 +/- 0.07 nA (glycolytic muscle, P < 0.05). The capsaicin-induced current amplitudes were 2.3 +/- 0.15 nA (oxidative muscle) versus 3.1 +/- 0.21 nA (glycolytic muscle, P < 0.05). Of neurones that responded to pH 6.0 with a sustained current, 88% also responded to capsaicin. Capsaicin exposure enhanced the proton responsiveness in the neurones innervating the muscle; and protons also increased the capsaicin response. These data suggest that (1) receptors mediating protons and capsaicin responses coexist in the DRG neurones innervating muscle; (2) the responsiveness of acidosis and capsaicin can be sensitized by each other; and (3) DRG neurones with nerve endings in a glycolytic muscle developed greater inward current responses to protons and capsaicin than did those with nerve endings in an oxidative muscle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据