4.6 Article

Interaction between the ventilatory and cerebrovascular responses to hypo- and hypercapnia at rest and during exercise

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 586, 期 17, 页码 4327-4338

出版社

WILEY-BLACKWELL
DOI: 10.1113/jphysiol.2008.157073

关键词

-

向作者/读者索取更多资源

Cerebrovascular reactivity to changes in the partial pressure of arterial carbon dioxide (P(a,CO2)) via limiting changes in brain [H(+)] modulates ventilatory control. It remains unclear, however, how exercise-induced alterations in respiratory chemoreflex might influence cerebral blood flow (CBF), in particular the cerebrovascular reactivity to CO(2). The respiratory chemoreflex system controlling ventilation consists of two subsystems: the central controller (controlling element), and peripheral plant (controlled element). In order to examine the effect of exercise-induced alterations in ventilatory chemoreflex on cerebrovascular CO(2) reactivity, these two subsystems of the respiratory chemoreflex system and cerebral CO(2) reactivity were evaluated (n = 7) by the administration of CO(2) as well as by voluntary hypo- and hyperventilation at rest and during steady-state exercise. During exercise, in the central controller, the regression line for the P(a,CO2)-minute ventilation ((V) over dot(E)) relation shifted to higher (V) over dot(E) and P(a,CO2) with no change in gain (P = 0.84). The functional curve of the peripheral plant also reset rightward and upward during exercise. However, from rest to exercise, gain of the peripheral plant decreased, especially during the hypercapnic condition (-4.1 +/- 0.8 to -2.0 +/- 0.2 mmHg l(-1) min(-1), P = 0.01). Therefore, under hypercapnia, total respiratory loop gain was markedly reduced during exercise (-8.0 +/- 2.3 to -3.5 +/- 1.0 U, P = 0.02). In contrast, cerebrovascular CO(2) reactivity at each condition, especially to hypercapnia, was increased during exercise (2.4 +/- 0.2 to 2.8 +/- 0.2% mmHg(-1), P = 0.03). These findings indicate that, despite an attenuated chemoreflex system controlling ventilation, elevations in cerebrovascular reactivity might help maintain CO(2) homeostasis in the brain during exercise.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据